
 

Colored arrow nodes represent “receptors” with which a chemical can directly 
interact. Colored circles represent intermediate biological processes that are not 
directly observable. White stars represent the assays that measure activity at the 
biological nodes. Arrows represent transfer of information. The green hexagon 
represents a noise process to which the assays are subject. Only a single 
example is explicitly shown, but each assay has its own underlying noise 
process. 

 

 
 
The Tox21 and ToxCast programs include multiple in vitro assays conducted in a 
high-throughput screening (HTS) format that are relevant to the AR pathway and 
can be used to identify substances with potential androgenic/anti-androgenic 
activity in vivo. Here we used a number of assays that map to the androgen 
receptor (AR) pathway to build a mathematical model that attempts to distinguish 
true AR pathway activity from technology-specific assay interference. This battery 
of nine assays (five from ToxCast and four from Tox21) probes perturbations of 
the AR pathway at multiple points (receptor binding, cofactor recruitment, gene 
transcription and protein production) in multiple cell types. We compiled a list of 
putative AR reference chemicals from the ICCVAM (2003) and OECD (2010) 
reference chemical lists that includes agonists, antagonists, selective androgen 
receptor modulators (SARMs), and inactive chemicals. The model showed 96% 
(23/24) concordance across the reference set, including successfully identifying 
multiple SARMs with both agonist and antagonist activity. However, fluoranthene, 
a SARM, was active only in the cofactor recruitment assays and was therefore 
mispredicted by the model as acting via an assay-specific interference pathway. 
All chemicals in the ToxCast library known to target AR were correctly identified 
by the model. We will discuss a variety of patterns of assay activity and pathway 
predictions across 1846 ToxCast chemicals, and identify those prioritized to be 
active against the AR pathway. Where available, we will compare predictions to 
toxicity data from the literature and look for potential trends relating to use case 
and exposure scenarios.  
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•  The data used were generated by the U.S. EPA ToxCast chemical 
research program (Dix et al. 2007; Judson et al. 2010) and the Tox21 
federal partnership (Tice et al. 2013). 

•  Concentration-response data on 1846 chemicals were generated with 
each chemical tested in up to nine AR pathway assays. Assay 
technologies included: 

‒  Two cell-free biochemical radioligand AR binding assays 
(Novascreen: Knudsen et al. 2011; Sipes et al. 2013) 

‒  Two cofactor recruitment assays that measure protein: protein 
interaction between AR and SRC1 (Odyssey Thera: Filer et al. 
manuscript in preparation) 

‒  One transactivation assay measuring reporter gene levels 
(Attagene: Martin et al. 2010; Franzosa et al. manuscript in 
preparation) 

‒  Two transactivation assays measuring reporter protein level 
readouts (Tox21: Huang et al. manuscript in preparation) 

‒  Two transactivation antagonist assays (Tox21: Huang et al. 
manuscript in preparation) 

•  The chemicals were run in concentration-response format in all 
assays except for the cell-free binding assays. These were initially run 
at a single concentration (25 µM), and if significant activity was seen, 
the chemical was then run in concentration-response mode. 

 

 

 

 

 

Data Sources 

 

•  The AR pathway model performed well against the reference chemical 
set, including identifying SARMs with both agonist and antagonist 
activities. Further, all 15 compounds in the library whose target gene is 
known to be AR were identified by the model as either agonists or 
antagonists with R1 or R2 >0.05.  

•  The majority of ToxCast chemicals tested in the AR assays were 
predicted to be inactive against the pathway. Certain environmental 
chemicals such as antimicrobials (e.g. triclosan and triclocarban) and 
plasticizers (e.g. bisphenol A and bisphenol AF) were predicted to be 
AR antagonists; however, this was confounded by cytotoxicity and may 
require more targeted testing within the relevant concentration ranges. 

•  The AR pathway model provides a biologically-based mathematical 
approach to distinguish assay interference from true agonist or 
antagonist activity, and to prioritize large numbers of environmental 
chemicals for their potential androgenic or  
anti-androgenic activity.  

Conclusions 
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•  A set of 24 positive and negative reference chemicals were used to 
evaluate the performance of the model. 

•  These reference chemicals were identified based on reports from 
ICCVAM (ICCVAM 2003) and OECD (OECD 2010). Chemicals were 
chosen that had consistent in vitro results across both reports and that 
were also in the ToxCast library. 

•  The reference chemicals and their predicted androgen agonist and 
antagonist activities are given in Table 2. 

Reference Chemical Performance 

 

 

Reference chemicals are color-coded on the sidebar as agonist (green), 
antagonist (red), SARM (both agonist and antagonist activity, orange) or inactive 
(white). In the heatmap, darker red indicates larger AUC values. A minimum 
cutoff of 0.05 AUC score was used to generate the heatmap. 

Figure 2. AR Pathway Receptor AUC 
Values for Reference Chemicals  

Figure 1. AR Pathway Model 

•  U.S. (7 U.S.C. 136, 110 Stat 1613) and international regulations 
require the testing of certain chemicals for the detection of potential 
endocrine activity (estrogen, androgen, steroidogenesis, and thyroid 
pathways). 

•  As many as 10,000 chemicals may lack sufficient testing data, with 
several hundred new chemicals being added each year (EPA 2011). 

•  The EPA National Center for Computational Toxicology (NCCT) and 
the NIH National Center for Advancing Translational Science (NCATS) 
run multiple endocrine related high throughput screening (HTS) 
assays as part of the ToxCast and Tox21 research programs. 

•  Following the estrogen receptor pathway model approach (Judson et 
al. manuscript in preparation), we have constructed a mathematical 
model to predict chemical-induced androgen receptor (AR) activity 
based on nine HTS assays that map to the AR pathway. 

Introduction 

Table 1. Assays Used in the AR 
Pathway Model 

ID Assay Name Source Gene Species Type 

A1 NVS human AR Novascreen AR Homo sapiens Receptor Binding 

A2 NVS chimpanzee AR Novascreen AR P. troglodytes Receptor Binding 

A3 OT_AR_ARSRC1_0480 Odyssey Thera AR;SRC Homo sapiens Cofactor 
Recruitment 

A4 OT_AR_ARSRC1_0960 Odyssey Thera AR;SRC Homo sapiens Cofactor 
Recruitment 

A5 ATG_AR_TRANS Attagene AR Homo sapiens RNA Reporter Gene 

A6 Tox21_AR_BLA_Agonist_r
atio NCGC AR Homo sapiens β-Lactamase 

Reporter Gene 

A7 Tox21_AR_LUC_MDAKB2
_Agonist NCGC AR Homo sapiens Luciferase  

Reporter Gene 

A8 Tox21_AR_BLA_ 
Antagonist_ratio NCGC AR Homo sapiens β-Lactamase 

Reporter Gene 

A9 Tox21_AR_LUC_MDAKB2
_Antagonist NCGC AR Homo sapiens Luciferase  

Reporter Gene 

•  A summary of the in vitro AR assays is shown in Table 1. Identifiers 
(ID) map to the model in Figure 1. 

•  All concentration-response assay data were analyzed using the 
ToxCast data analysis pipeline, which automates the processes of 
baseline correction, normalization, curve-fitting, and hit-calling, as well 
as detection of a variety of potential confounders annotated as 
“caution flags”. This pipeline and all raw and processed data and 
annotations are publically available (http://actor.epa.gov/). 

AR Pathway Assays 

•  For many chemicals, there are many assay hits for both AR and non-
AR assays in the concentration range in which cytotoxicity is 
observed. 

•  We have developed a scheme to filter out these nonselective assay 
hits using the mean logAC50(cytotox), the median absolute deviation 
(MAD) of the logAC50(cytotox) hits, and the median of the MAD of the 
logAC50(cytotox) distributions across all chemicals (the global 
cytotoxicity MAD). 

•  For chemicals with two or more positive responses in cytotoxicity 
assays, we calculate a “Z-score” for each AR pathway assay hit: 

 

•  A hit with a large Z-value occurs at concentrations significantly below 
where cytotoxicity is occurring. This hit is both unlikely to be caused 
by cell-stress or cytotoxicity-related processes and is more likely to 
cause toxicity through a target-selective mechanism. 

Cytotoxicity Filter 
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•  The graphical representation of the network used to evaluate the 
integrated in vitro assay responses is shown in Figure 1. The model 
was based on the series of molecular events that typically occur in a 
receptor-mediated response. 

‒  The process starts with the interaction of a chemical with a nuclear 
AR (receptor node R1). 

‒  For example, an AR agonist will cause the receptors to dimerize 
(node N1), translocate to the nucleus and recruit co-factors to form 
the complete active transcription factor complex (TF) (node N2). 

‒  This TF then binds to the chromatin DNA (node N3), initiates 
transcription of mRNA (node N4) and subsequent translation to 
protein (node N5). 

•  Each of these processes (with the exception of dimerization and DNA 
binding) was measured in the current collection of nine in vitro assays 
represented as white stars. 

•  The AR pathway is shown in two modes: agonist (blue, acting through 
R1) and antagonist (red, acting through R2). The model assumes that 
a chemical that interacts with the AR will bind in one or both of the 
agonist or antagonist conformations and that this will trigger activity in 
the appropriate pathway. 

•  Every in vitro assay is subject to processes that can lead to 
nonspecific activity, independent of the AR pathway node that it is 
supposed to measure. The assay interference pathways were 
modeled as alternate “pseudo-receptors” (gray arrow nodes). 

•  Every in vitro assay is also subject to artifacts and sources of 
experimental noise, and these noise processes are represented by 
the green hexagon. 

 

 

 

 

 

AR Pathway Network 

•  The computational model assumes that the value (the efficacy, A) 
returned by an assay at a given concentration is a linear sum of the 
contributions from the receptors that it measures (i.e. it is a simple 
linear additive model): 

•  The goal is then to find a set of  values that minimize the difference 
between the predicted assay values (Ai

pred) and the measured ones 
(Ai

meas) for each chemical and concentration. For each chemical-
concentration pair, a constrained least-squares minimization approach 
is used, where the function being minimized is: 

•  The term penalty(R) penalizes solutions that predict that many 
receptors are being simultaneously activated by the chemical. It is 
given by: 

 

•  In this equation, SR is the sum of R values at that concentration,  SR0 
is a threshold value and α is a small number between 0 and 1. This 
penalty term helps stabilize the solutions and enforces a reasonable 
physical assumption about chemical promiscuity, i.e., that it is unlikely 
that most chemicals will strongly and specifically interact with many 
dissimilar molecular targets. 

•  The model results in a response value (between 0 and 1) for each 
receptor at each concentration. These results are summarized as area 
under the curve (AUC), which is the integral across the concentration 
range: 

Mathematical Model 

Abbreviations: CAS RN = Chemical Abstracts Service Registry Number; SARM = 
selective androgen receptor modulator, which has both agonist and antagonist 
activity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Reference Chemicals 
CAS RN Chemical Name Activity 

2392-39-4 Dexamethasone Agonist 

63-05-8 4-Androstenedione Agonist 

521-18-6 5a-Dihydrotestosterone Agonist 

58-18-4 Methyl testosterone Agonist 

57-85-2 Testosterone propionate Agonist 

13311-84-7 Flutamide Antagonist 

140-66-9 4-tert-Octylphenol Antagonist 

32809-16-8 Procymidone Antagonist 

80-05-7 Bisphenol A Antagonist 

50471-44-8 Vinclozolin Antagonist 

72-55-9 p,p'-DDE Antagonist 

52806-53-8 Hydroxyflutamide Antagonist 

56-53-1 Diethylstilbestrol Antagonist 

84-74-2 Di-n-butyl-phthalate Inactive 

117-81-7 Diethylhexyl phthalate Inactive 

1912-24-9 Atrazine Inactive 

427-51-0 Cyproterone acetate SARM 

50-28-2 17-β-Estradiol SARM 

53-16-7 Estrone SARM 

330-55-2 Linuron SARM 

52-01-7 Spironolactone SARM 

57-83-0 Progesterone SARM 

84371-65-3 Mifepristone SARM 

206-44-0 Fluoranthene SARM 

•  The AR pathway model predictions are shown in Figure 2 as a 
heatmap. The chemicals are plotted against their receptor AUC 
values, with R1 being agonism and R2 being antagonism. 

•  Overall, the model showed 96% (23/24) concordance in identifying 
agonist or antagonist AR activity across the reference set, using a 
threshold of 0.01 as a positive AUC score. 

‒  The three inactive reference chemicals were identified by the 
model as being inactive. 

‒  All five agonist reference chemicals produced a high R1 score, 
and did not show any patterns of assay interference. 

‒  Of the eight antagonist reference chemicals, all were identified as 
antagonists with R2 scores greater than 0.01. In Figure 2, it 
appears that 4-(1,1,3,3-tetramethylbutyl)phenol (4-tert-
octylphenol) was inactive but that is due to a threshold issue 
where only scores >0.05 were plotted; this chemical has an 
antagonist model score of R2 = 0.036. 

‒  Two antagonist reference chemicals, bisphenol A and flutamide, 
were also predicted to potentially act via assay interference 
pathways, but the R3 model scores were lower than for R2 
(antagonism). 

•  The model successfully identified multiple selective androgen receptor 
modulators (SARMs) with both agonist and antagonist activity. 

‒  Four SARMs were correctly predicted to have both agonist and 
antagonist activity by the model, while two SARMs (estrone and 
linuron) were only identified as antagonists and one SARM (17-β-
estradiol) was only predicted to be an agonist. 

‒  Fluoranthene, also a SARM, was active in the cofactor recruitment 
assays but none of the other AR pathway assays and was 
therefore mispredicted by the model as acting via an assay-
specific interference pathway. 

•  Examples of assay concentration-response plots and model AUC 
predictions are shown in Figure 3 for testosterone propionate 
(agonist), vincolozolin (antagonist), cyproterone acetate (SARM), and 
fluoranthene (SARM, missed by the model). 

 

 

 

 

 

Model Results 

Testosterone Propionate (Strong Agonist) 

 

 

 

 

Vincolozolin (Antagonist) 

 

 

 

 

 

Cyproterone Acetate (SARM) 

 

 

 

 

 

Fluoranthene (SARM Mispredicted as Acting Via Assay 
Interference Pathway) 

 

 

 

 

 

 

 

 

 

Figure 3. Examples of Reference Chemical 
Activity in Assays and Receptor AUC Values 
From the AR Pathway Model  

The histogram shows AR pathway model scores, using the maximum R1 
(agonist) or R2 (antagonist) value and without applying the cytotoxicity filter, 
across the 1846 chemicals in the ToxCast library. 

Figure 4. AR Pathway Model Scores 
for 1846 ToxCast Chemicals 

•  Figure 4 shows the distribution of the AR model pathway scores (the 
maximum agonist or antagonist score for each chemical) across the 
ToxCast chemical library. 

•  Of the 1846 chemicals tested in the AR pathway assays, 1549 were 
inactive in the model, with both R1 and R2 scores below 0.0001, while 
115 chemicals were predicted to strongly affect the pathway either as 
agonists or antagonists (R1 or R2 >0.1). The remaining 182 chemicals 
had model scores in the intermediate region. 

AR Pathway Activity Across the 
ToxCast Library  


